EMS performance evaluation with analytical stochastic models

Armann Ingolfsson, armann.ingolfsson@ualberta.ca University of Alberta School of Business

1st International Workshop on Planning of
Emergency Services: Theory and Practice,
CWI, Amsterdam, 26 June 2014

The answer to Rob's question from yesterday ...

CV Assumptions

- For an average call, travel time $T_{\text {avg }}$ has: variance $=b_{0}+b_{1} \times$ mean \leftarrow Herman and Lam (1974)
- Random variable B (mean 1 , variance b_{2}) captures call-to-call variability via $T=B \times T_{\text {avg }}$, where T is travel time for a randomly chosen call
- B and $T_{\text {avg }}$ are independent
- Functional form of CV vs. median relation is the same as for CV vs. mean

Parametric CV function

- Then: $\mathrm{CV}(d)=\frac{\sqrt{b_{0}\left(b_{2}+1\right)+b_{1}\left(b_{2}+1\right) m(d)+b_{2} m(d)^{2}}}{m(d)}$
- Interpretation of parameters:
- b_{0} : "fixed variability"-data recording errors, time spent finding an address, spatial aggregation, etc.
- b_{1} : short-term variability in speed during a trip
- b_{2} : long-term call-to-call variability, due to factors not included in the model
- CV approaches $\sqrt{ } b_{2}$ as distance goes to infinity
- CV has same breakpoint as median

Parametric Functions

Outline

- Performance Evaluation Models
- Using the Erlang B Performance Evaluation Model for Yellow and Red Alerts

Performance Evaluation

Decomposing Performance

- Performance estimates:
- $p_{i j}=$ estimated performance for calls from j if station i responds
- "performance:" could be coverage probability / survival probability / average response time / ...
- Dispatch probabilities:
$-f_{i j}=\operatorname{Pr}\{$ station i responds | call from j\}
- This is where queueing / service syste these
- Call arrival rates:
- Neighborhood $j: \lambda_{j}$, system: λ
- System performance: $\sum_{j} \frac{\lambda_{j}}{\lambda} \sum_{i} f_{i j} p_{i j}$

("Simplest Interesting"?) Example

2 stations, each with 1 unit
2 neighborhoods
$1 / \mu=$ avg. service time $=1$ hour
$\lambda=$ call arrival rate $=1 /$ hour

Performance estimates:
$p_{11}=\operatorname{Pr}\{$ response time \leq standard \mid call from 1,1 responds $\}$

$$
=0.95
$$

$p_{12}=p_{21}=0.5$
$p_{22}=0.95$

Model 1: "Always Available"

Assumes all stations have an available ambulance at all times
Provides upper bound on performance
Used in some station location optimization models

Model 2: Binomial

Input:
$p=$ average busy fraction = $0.4=$ probability that an ambulance is busy, independent of status of all other ambulances

Used in some ambulance allocation optimization models

Model 3: Erlang B

Model	f_{11}	f_{21}	f_{12}	f_{22}	B	Performance
Always available	1.00	0.00	0.00	1.00	0.00	0.95
Binomial	0.60	0.24	0.24	0.60	0.16	0.69
Erlang B	0.60	0.20	0.20	0.60	0.20	0.67

p_{11}	p_{21}	p_{12}	p_{22}
0.95	0.50	0.50	0.95

λ Was chosen so that ambulance utilization $=p=0.4$

Probability that closest ambulance responds is the same as in binomial model

Probability that $2^{\text {nd }}$-closest ambulance responds is lower, because $\operatorname{Pr}\left\{2^{\text {nd }}\right.$-closest ambulance is busy \mid closest ambulance is busy $\}>p$

Model 4: Hypercube Queueing Model

	Model	f_{11}	t_{21}	f_{12}	f_{22}	B	Performance
	Always available	1.00	0.00	0.00	1.00	0.00	0.95
	Binomial	0.60	0.24	0.24	0.60	0.16	0.69
	Erlang B	0.60	0.20	0.20	0.60	0.20	0.67
$\lambda_{1}=0.2 / \mathrm{hr}$.	HQM	0.66	0.14	0.26	0.54	0.20	0.65
-		p_{11}	p_{21}	p_{12}	p_{22}		
$\lambda_{2}=0.8 / \mathrm{hr} .$		0.95	0.50	0.50	0.95		

In this model, the two ambulances are distinguishable
\rightarrow Ambulance 2 is busier
\rightarrow Neighborhood 2 has a lower probability of closest station responding

NoPenting

$\lambda_{1}=0.2 / \mathrm{hr} . /$| | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | f_{11} | f_{21} | f_{12} | f_{22} | B | Performance |
| Always available | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.95 |
| Binomial | 0.60 | 0.24 | 0.24 | 0.60 | 0.16 | 0.69 |
| Erlang B | 0.60 | 0.20 | 0.20 | 0.60 | 0.20 | 0.67 |
| HQM | 0.66 | 0.14 | 0.26 | 0.54 | 0.20 | 0.65 |
| Repositioning | 0.45 | 0.35 | 0.09 | 0.72 | 0.20 | 0.70 |
| | p_{11} | p_{21} | p_{12} | p_{22} | | |
| | 0.95 | 0.50 | 0.50 | 0.95 | | |

Models 1-4 assume an ambulance always returns to its home station

Model 5: If only one ambulance is available and it is at Station 1, then move it to Station 2 (avg. move time $=6 \mathrm{~min}$.)

Neighborhood 1 is better off, Neigbhorhood 2 is worse off

Comparison of Models

Model	Performance	Increased realism	Repositioning	Incorporated in math programs	Scaling issues
Always available	0.95	\square		\checkmark	
Binomial	0.69			\checkmark	
Erlang B	0.67				$?$
HQM	0.65			$?$	
Repositioning	0.70		\checkmark	$?$	

Managing red and yellow alerts and the consequences of calling in additional units or expediting hospital turnaround

Amir Rastpour, Bora Kolfal, Armann Ingolfsson School of Business, University of Alberta

Managing red and yellow alerts and the consequences of calling in additional units or expediting hospital furnaround

Ambulance shortage periods

'Busy’ ambulance system causes concern for paramedics
During the first nine months of 2010, the city of Edmonton had no ambulances to cover medical emergencies for almost 10 hours in total.

- Edmonton Journal, Jan. 20, 2012

Too few paramedics to answer call: Union official

- Toronto Sun, May 13, 2012

Opposition demands EMS wait time review

- Calgary Sun, Feb. 24, 2012

Alert periods

Periods during which:

- Most ambulances are busy

Yellow Alert
Available ambulances below a threshold.
Calgary EMS threshold $=12$ ambulances

- All ambulances are busy

Red Alert

Yellow alert example

Time

Descriptive Statistics

| Table 1 | EMS configuration in Edmonton in 2008 and in Calgary in 2009. | |
| :--- | :--- | :--- | :--- |
| Parameter | Edmonton | Calgary |
| Yellow Alert threshold (θ) | 8 | 12 |
| Minimum number of scheduled ambulances | 19 | 28 |
| Maximum number of scheduled ambulances | 36 | 54 |
| Average number of scheduled ambulances | 25 | 41 |

Table 2 Descriptive statistics for the duration of alert periods in Edmonton in 2008 and in Calgary in 2009.

	Yellow Alert			Red Alert	
Statistic	Edmonton	Calgary		Edmonton	Calgary
Sample Size	1349	703		587	9
Mean (min.)	106.41	7.09		7.20	1.37
Standard Deviation (min.)	120.26	11.53		11.32	1.32
Maximum (min.)	1012.02	127.28		138.93	4.53
Squared Coefficient of Variation	1.28	2.64		2.47	0.94

Decision faced by dispatchers

- Ride out the alert... or act?
- Possible actions:
- Reposition ambulances*
- Call in additional ambulances
- Free up busy ambulances in EDs
- ?
*Alanis et al. 2012, Maxwell et al. 2010, Schmid 2011

Mathematical Model: "Erlang B loss model"
Analogy:
phone lines = ambulances
busy signal = red alert
k-partial busy period:
k or more of c servers are busy

Yellow Alert $=(c-$ threshold +1$)$-partial busy period
Red Alert = c-partial busy period

Relationship between alert periods and partial busy periods

Calgary: 41 servers
Yellow Alert $=30$-partial busy period

Main Result

Equations to calculate average busy period durations:
$\mathrm{E}\left(B_{c}\right)=\frac{1}{c \mu}, \mathrm{E}\left(B_{k}\right)=\frac{\lambda \mathrm{E}\left(B_{k+1}\right)}{k \mu}+\frac{1}{k \mu}, k=c-1, \ldots, 1$.

Also have equations for variance and other quantities

Validation-the whole year

Reasons for poor fit

- Number of units varies with time
- Call rates vary with time
- "Service speed" varies with number of busy units
- Check how much fit improves after controlling for these factors

Validation for weekday 9 am - 1 pm

Aggregation over 16 time segments

Actions and Performance Measures

- Actions
- Call in additional units
- Free up units in EDs Modeled as "increase service rate"
- Performance measures
- Average remaining Yellow Alert duration
- Average number of "missed" calls (because of red alert)

Expediting Hospital Turnaround

Calling in Additional Units

"Optimal" Combination of Actions

Called in ambulances

(b) Expected number of lost calls.
(a) Expected residual Yellow Alert duration.

The Optimal Combination can Depend on the Performance Measure

Called in ambulances

sooutinquit pasearan	0.32			
	0.36	0.31		
	0.40	0.34	0.31	
	0.45	0.38	0.34	0.32
	0	1	2	3

(b) Expected number of lost calls.
(a) Expected residual Yellow Alert duration.

